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RL in dialog system
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User simulator

Challenge:
* RLrequire interaction with the environment.

* The collecting of real experience is expensive and time consuming.
Solution:

e User simulator [Schatzmann et al., 2007
Mimic what a real user does in a conversation
Provide environment for RL agent
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User simulator: exsiting methods
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* Learn from the limited real experience: _
DDQ dialogue agent. [Peng et al.,2017 |

DDQ - world model [Peng et al.,2017 ]
* |nsufficient context informations



Our proposed model : Universe model

User simulator

Universe model
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The universe model architecture

RNN + Multi task learning
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Universe model

User: Can | book some tickets for Venom? _ .
e Context information

learning

Agent: What date would you like to see it?

User: | want to set it up tomorrow.
Agent: Which theater would you like? St-1
. . SO' Sl; "'St—l' St ey SN/Z

User: | want to watch at regal meridian 16.
Agent: What time would you like to see it? .

User: 9:25 pm. . Hti task learning

Agent: How many tickets do you need? : .

User: 2 tickets please!

Great - | was able to purchase 2 tickets
Agent: for you to see Venom tomorrow at regal
meridian 16 theater at 9:25 pm.

* Output: aq,,r,t




Experimental results

* The simulating performance of different user simulators

User simulators Reward acc Term acc User action acc

Original world model

from DDQ5) 0.419 0.984 0.736
Transferred world model 0.934 0.983 0.891
Universe model 0.951 0.991 0.95

* The performance of different simulators on the same dialogue system

User simulator Dialog avg reward Dialog avg turns Dialog success acc

Original world model

from DDQ5) 45.11 19.94 0.784

Transferred world model 53.93 11.73 0.823

Universe model 55.26 11.85 0.851




Conclusion and Future work

Universe model :
* Provide a more human-like environment and generate
unlimited training data for RL-based dialogue system to
interact with.

Future work:
* Narrow the gap between the human and user simulator
to improve the human evaluation.

* And It’s still a challenge for universe model to predict
more complex dialogues.



Thank you!
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